Download Elliptische Funktionen und Modulformen, 2. Auflage by Max Koecher, Aloys Krieg PDF

April 5, 2017 | German | By admin | 0 Comments

By Max Koecher, Aloys Krieg

Den Autoren gelingt ein Br?ckenschlag von den Grundlagen zur aktuellen Forschung. Ausgehend von den Weierstra?schen Arbeiten behandeln sie elliptische Kurven und komplexe Multiplikation. Der Teil ?ber elliptische Modulformen ist auch separat lesbar. Erstmals in Lehrbuchform wird ein Beweis des Siegelschen Hauptsatzes f?r elliptische Modulformen gegeben. Mit ausf?hrlichen Beweisen und zahlreiche ?bungsaufgaben.

Show description

Read or Download Elliptische Funktionen und Modulformen, 2. Auflage PDF

Best german books

German Autumn

Post 12 months be aware: First released in 1946 by means of Quartet Books
------------------------

In overdue 1946, Stig Dagerman used to be assigned by way of the Swedish newspaper Expressen to record on existence in Germany instantly after the autumn of the 3rd Reich. First released in Sweden in 1947, German Autumn, a suite of the articles written for that project, was once in contrast to the other reporting on the time.

While such a lot Allied and international newshounds spun their writing at the greatly held trust that the German humans deserved their destiny, Dagerman disagreed and suggested at the humanness of the boys and ladies ruined via the war—their guilt and discomfort. Dagerman used to be already a well known author in Sweden, however the book and vast reception of German Autumn all through Europe verified him as a compassionate journalist and ended in the long-standing overseas impression of the publication.

Presented the following in its first American variation with a compelling new foreword via Mark Kurlansky, Dagerman's essays at the tragic aftermath of struggle, anguish, and guilt are as hauntingly suitable at the present time amid present international clash as they have been sixty years in the past.

Extra resources for Elliptische Funktionen und Modulformen, 2. Auflage

Example text

Z ω +ω −z . 1 1 2 . .... .... .... .... .... ....... .... .... .... .... .... .. .... ... .. .... . . . .. .... . . . .. .. ... .. .. . ........ .......... ........ ........ ........ ........ .......... ........ . ... ... .... ... . . .... . .... . . .... . .. .. .... .. ... .... .... .... .... .... .... .... .... .... .... .. ... z ω −¯ z 2 ..... .. .... .... .... . . ............................................................................................................................................................................................................................................

B Ù× P ¸ ×Ó ×× f Ò Ù Ò a , . . , a ÆÙÐÐ×Ø ÐÐ Ò ÙÒ Ò Ù Ò b , . . , b ÈÓРغ ÛÖ Î Ð Ø Û Ð× ÙÖ ÒÞ Ð Ö Ï Ö ÓÐÙÒ Ò Ö ÈÙÒ Ø Ò Òº Ñ Ø × Ö Ø × Ù×× ÚÓÒ Ë ØÞ Ñ Ø ½º ´½µ Ò Ö ÓÖÑ a + · · · + a ≡ b + · · · + b (mod Ω)º ´µ × Ê Ð Ø ÓÒ Û Ö ÆºÀº Ð Ö Ø× ½ ¾ ÒÒØ ´ ÙÚÖ × ÓÑÔÐ Ø × Á¸ ½ ¾½½µº Æ Ò Ñ ÎÓÖ× Ð ÚÓÒ Â Ó Ø´ µ Ö Ù Ð× Ê Ð ¹ ÇÖ ÒÙÒ Ö ÐÐ ÔØ × Ò ÙÒ Ø ÓÒ f º Ë ØÞ ÙÒ Ø ÓÒº Å Ò Ò ÒÒØ r × Ò¸ ×× Ò ÐÐ ÔØ × ÙÒ Ø ÓÒ Ö ÇÖ ÒÙÒ 0 ÓÒ×Ø ÒØ ×Ø ÙÒ ×× × Ò ÐÐ ÔØ × ÙÒ Ø ÓÒ Ö ÇÖ ÒÙÒ 1 غ Ï Ö Û Ö Ò Ò º¿ × Ò¸ ×× r ≥ 2 ÙÒ ´ µ Ù ÒÖ Ò Ö Ü ×Ø ÒÞ Ò Ö ÐÐ ÔØ × Ò ÙÒ Ø ÓÒ Ñ Ø ÚÓÖ Ò Ò ÆÙÐй ÙÒ ÈÓÐ×Ø ÐÐ Ò × Ò º ¿º Ö Ü ×Ø ÒÞ¹Ë ØÞ ÙÒ Ö×Ø ÓÐ ÖÙÒ Òº Ð× Ö×Ø ÃÓÒ× ÕÙ ÒÞ Ö Ä ÓÙÚ ÐÐ × Ò Ë ØÞ Þ Ø × × Ò × Ñ ÙÒ Ñ Ò ×Ø Ò × Ò Øظ ×× 1 1 1 r r 1 1 r 1 r r r ¾ Ã Ô Ø Ð Áº ÐÐ ÔØ × ÙÒ Ø ÓÒ Ò Ñ Ò ÐÐ Ò Ù× Ö ÒÒ Ñ Ö Ü ×Ø ÒÞ Ò Ö Ò Ø Ò ÐÐ ÔØ × Ò ÙÒ ¹ Ø ÓÒ Ò × Ö ÙÒ ÐÐ Ö ÐÐ ÔØ × Ò ÙÒ Ø ÓÒ Ò ÓÐ ÖÒ ÒÒº × × Ò ¹ Ò Û Ø Ö Ò Ò ÐÝØ × Ò Ë Ð ×× Ö ÓÖ ÖÐ º ÞÙ Û Ö Ò Ð Ð Ä ÓÙÚ ÐÐ × Ò Ë ØÞ Ò Û Ò Ø Ò Ù Ò Ñ × Ø Ò ÐÐ ÔØ × ÙÒ Ø ÓÒ ℘ = ℘Ω ¸ ÇÖ ÒÙÒ Ø ÙÒ ×ÓÒ×Ø ÓÐÓÑÓÖÔ ×غ Á Ö ØØ ÖÔÙÒ Ø ÚÓÒ Ω Ò Ò ÈÓÐ 0 Ø ÓÖÑ ¹Ê Ü ×Ø ÒÞ¹Ë ØÞº ¾º Ä ÙÖ ÒØ º ´½µ ℘(z) = z −2 + a1 z + .

R k−1e2πirτ . r=1 Ö ÒØ Ø ÓÒ Ö ÓØ Ò Ò×¹È ÖØ Ð ÖÙ ÒØÛ ÐÙÒ ´Ú к ʺ Ö ¾¼¼¾ ¸ Ë ØÞ ½½º¾º½µ Ö ÐØ Ñ Ò È ÖØ Ð ÖÙ ¹ Ê ÑÑ Öظ º Ë ÙÑ π sin πτ 2 (τ + n)−2 , τ ∈ C, τ ∈ / Z. = n∈Z Ö Ø Ë Ø ÓÒÚ Ö ÖØ Ò Ñ ÃÓÑÔ ØÙÑ Ò C¸ × Ò Ò ÈÙÒ Ø ÚÓÒ Z ÒØ Ðظ Ð Ñ º Ï ÐØ Ñ Ò Ö τ ∈ H¸ ×Ó Ö ÐØ Ñ Ò Û Ò |e | = e <1 Ù 2πiτ −2πIm τ π sin πτ 2 = 2πi eπiτ − e−πiτ ∞ 2 = (−2πi)2 e2πiτ 1 = (−2πi)2 · re2πirτ . (1 − e2πiτ )2 r=1 ÙÔØÙÒ ´¿µ ×Ø Ð×Ó Ö k = 2 Û × Òº Ö Ë Ø Ò ÐÓ Ð Ð Ñ Ò τ ÓÒÚ Ö Ö Ò¸ Ö ÐØ Ñ Ò Ò ÐÐ Ñ Ò Ò ÐÐ ÙÖ Û Ö¹ ✷ ÓÐØ Ö ÒØ Ø ÓÒ Ò τ º Ð Ò Ë Ø ÚÓÒ ´¿µ ×Ø Ó Ò Ö Ò τ Ô Ö Ó × Ñ Ø Ö È Ö Ó 1¸ Ö Ø Ë Ø ÚÓÒ ´¿µ Ø × Ò Ë Ú Ö ÐØ Ò ÓÖÑ Ò Ö ÓÙÖ Ö¹Ê Û Öº ¹ Ñ Ø Ö ÐØ Ò Û Ö ×Ó Ð ÓÙÖ Ö ÒØÛ ÐÙÒ Ö × Ò×Ø Ò Ê Òº ¼ Ã Ô Ø Ð Áº Ö ÐÐ τ ∈ H ÙÒ Ë ØÞº Òk≥4 Ö ÙÒ Ø ÓÒ Ò ÐØ ∞ ´µ Gk (τ ) = 2ζ(k) + 2 ÑØ ∞ Ê Ñ ´µ ´µ ÙÒ ds , s ∈ R .

Download PDF sample

Rated 4.06 of 5 – based on 3 votes